Received 14 April 2005 Accepted 20 April 2005

Online 27 April 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

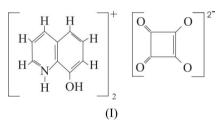
Tonko Kolev,^a Snezana Sinadinovic Fiser,^b Michael Spiteller,^c William S. Sheldrick^d* and Heike Mayer-Figge^d

^aInstitute of Organic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Building 9, 1113 Sofia, Bulgaria, ^bUniversity of Novi Sad, Department of Petrochemical Engineering, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia and Montenegro, ^cInstitut für Umweltforschung, Universität Dortmund, Otto-Hahn-Straße 6, D-44221 Dortmund, Germany, and ^dLehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany

Correspondence e-mail: william.sheldrick@rub.de

Key indicators

Single-crystal X-ray study T = 566 KMean σ (C–C) = 0.005 Å R factor = 0.060 wR factor = 0.152 Data-to-parameter ratio = 11.6


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The title compound, $2C_9H_8NO_2^{+}\cdot C_4O_4^{2-}$, contains a dianion with approximately D_{4h} symmetry [C-C = 1.465 (4)-1.470 (4) Å and C-O = 1.248 (4)-1.264 (4) Å]. Individual dianions are linked to four neighbouring 8-hydroxyquinolinium cations by $O\cdots H-N$ [2.666 (4) and 2.681 (4) Å] and $O\cdots H-O$ [2.596 (3) and 2.605 (3) Å] hydrogen bonds to generate a polymeric chain.

Bis(8-hydroxyquinolinium) squarate

Comment

In the course of our continuing spectroscopic and structural studies of selected 'push-pull' substituted pyridinium betaines of squaric acid, having non-linear optical (NLO), photo-refractive and electro-optical properties (Nalwa *et al.*, 1997; Wolff & Wortmann, 1999; Chemla & Zyss, 1987; Bosshard *et al.*, 1995), the crystal structure of the title compound bis(8-hydroxyquinolinium) squarate, $(8H_2Q)_2Sq$, (I), has been determined. We were, in fact, attempting to prepare 8-hydroxyquinolinium hydrogensquarate $(8H_2Q^+\cdot HSq^-)$, which can be easily transformed into the corresponding betaine of squaric acid, but isolated (I) instead in quantitative yield.

This interesting result provides a textbook example of a reagent that has wide interactive selectivity, particularly through pH control. The analytical applications of the formation of (I) are being investigated and will be published at a later date. Protonation of the heterocyclic N atom of 8hydroxyquinoline takes place in the presence of relatively strong organic acids and the resulting $[8H_2Q]^+$ cation also participates in hydrogen-bonding interactions. The structures of many complexes of 8-hydroxyquinoline including Pd(8Q)₂ (Prout & Wheeler, 1966), $K(8Q) \cdot 8HQ$ and $K(8H_2Q)(8Q)_2$ (Hughes & Truter, 1979), and the $[H_2Q]^+$ salts of, respectively, 2-nitrobenzoic acid, 3,5-dinitrobenzoic acid and 3,5-dinitrosalicylic acid (Smith et al., 2001), 5-sulfosalicylic acid (Smith, Wermuth & Healy, 2004), 8-hydroxy-7-iodoquinoline-5sulfonic acid (Smith, Wermuth & White, 2004), salicylic acid (Singh et al., 2000; Smith, Wermuth & White, 2003), 2-nitrobenzoic acid, 3,5-dinitrobenzoic acid and 3,5-dinitrosalicylic acid (Smith et al., 2000). The structural chemistry of metal squarates has been summarized up to 1990 in a review (Lee & Wang, 1996). Squaric acid, $H_2C_4O_4$ (H_2Sq), is known to have a

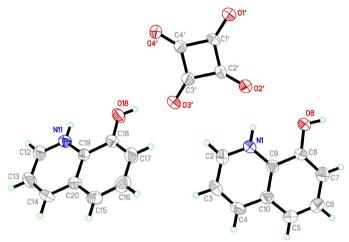


Figure 1

The molecular structure of 8-quinolinium squarate with the labelling of non-H atoms. Displacement ellipsoids are shown at the 50% probability level.

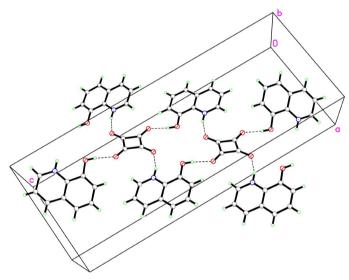


Figure 2 Hydrogen bonding (dashed lines) between molecules of (I).

polymeric layer structure with planar molecules connected through strong intermolecular $O-H \cdots O'$ hydrogen bonds with a distance of only 2.649 Å. The most studied type of metal squarate structure is that of $[M(Sq)(H_2O)_4]$, with two bridging [Sq]²⁻ ligands at *trans* positions, which forms an infinite chain structure. The squarate dianion $[Sq]^{2-}$ is an interesting cyclic ligand with aromaticity (Lee & Wang, 1996) and a potential D_{4h} symmetry. As a bridging ligand it can adopt a μ_2 -, μ_3 - or μ_4 -mode between metal ions. In our previous investigations, it was shown that the hydrogensquarate salt of R-(-)-1phenylglycine forms infinite chains of [HSq]⁻ anions along the b axis (Angelova, Petrova et al., 1996). In contrast, in Largininium hydrogensquarate, the [HSq]⁻ anions participate in hydrogen-bonded dimers (Angelova, Velikova et al., 1996). An anionic dimer structure was also found in 4-phenylpyridinium hydrogensquarate (Kolev et al., 2004).

The vibrational bands in the IR and Raman spectra of (I) coincide within $2-3 \text{ cm}^{-1}$. The band belonging to the O-H stretching vibration of the cation is tentatively assigned to 3200 cm^{-1} . In the Raman spectrum, it appears as a shoulder of the strong band at 3075 cm^{-1} belonging to the C-H stretching vibration of the aromatic ring. The weak band at 1806 cm^{-1} and the middle ones at 1585 and 1499 cm⁻¹ are attributed to the mixed vibration of the squarate dianion. Strong bands at 1633 and 1603 cm⁻¹ are assigned to the radial vibrations 8a and 8b of the aromatic ring, and the strong Raman bands at 1383 (vs) and 1066 (s) cm⁻¹ to the mixed C– C and C-O vibrations of the squarate ring. The strongest band in the Raman spectrum at 104 cm^{-1} and additional strong bands at 85 and 71 cm⁻¹ belong to the lattice vibrations of the crystal. The squarate dianion adopts a nearly perfect resonance structure with approximately D_{4h} symmetry. All C-C distances coincide within 0.005 Å: C1'-C2' =1.465 (5) Å, C2'-C3' = 1.465 (4) Å, C3'-C4' = 1.468 (4) Å and C4' - C1' = 1.470 (4) Å. The small differences in the C-O bond lengths can be explained by their differing interactions with H-bonds donors. Compound (I) exhibits the strong interactions listed in Table 1, which also includes two weaker O···H−C interactions. As depicted in Fig. 2, the hydrogenbonding pattern leads to a chain structure for (I).

Experimental

The title compound was synthesized by adding a methanolic solution of 8HQ to an aqueous solution of squaric acid in a 1:1 molar ratio with continuous stirring and heating under reflux. A yellow precipitate was obtained from the resulting dark-yellow solution after 60 min. The product was filtered off after cooling and recrystallized from dimethylformamide to afford (I) in 89% yield. The purity of the compound was confirmed by elemental analysis and mass spectrometry, IR and UV-vis spectrometry. The absorption maximum of (I) is at 386 nm in methanol and 396 nm in dimethylformamide. Yellow single crystals, suitable for X-ray analysis, were grown from dimethylformamide at room temperature over a period of two weeks.

Crystal data

$2C_9H_8NO^+ \cdot C_4O_4^{2-}$	$D_x = 1.502 \text{ Mg r}$			
$M_r = 404.37$	Mo $K\alpha$ radiatio			
Monoclinic, $P2_1/c$	Cell parameters			
a = 9.578 (3) Å	reflections			
b = 7.3024 (17)Å	$\theta = 7.5 - 15^{\circ}$			
c = 25.656(5) Å	$\mu = 0.11 \text{ mm}^{-1}$			
$\beta = 94.830 \ (13)^{\circ}$	T = 566 (2) K			
$V = 1788.1 (6) \text{ Å}^3$	Prism, yellow			
Z = 4	$0.42 \times 0.36 \times 0$			
Data collection				

Siemens P4 four-circle diffractometer Profile-fitted ω scans Absorption correction: ψ scan (XPREP in SHELXTL-Plus; Sheldrick, 1995) $T_{\min} = 0.930, T_{\max} = 0.973$ 4380 measured reflections 3152 independent reflections

 ${\rm m}^{-3}$ on s from 15 0.28 mm

1640 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{\rm max} = 25.0^{\circ}$ $h = -1 \rightarrow 11$ $k = -1 \rightarrow 8$ $l = -30 \rightarrow 30$ 3 standard reflections every 100 reflections intensity decay: 2%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0609P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.060$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.152$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 0.99	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
3152 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
272 parameters	Extinction correction: SHELXL97
H-atom parameters constrained.	Extinction coefficient: 0.0063 (13)

Table 1

Hydrogen-bonding geometry (Å, $^{\circ}$).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C7-H7···O1′ ⁱ	0.93	2.56	3.168 (4)	123
$O8-H8\cdots O1'^{i}$	0.82	1.78	2.596 (3)	172
$N1-H1\cdots O2'$	0.86	1.84	2.666 (4)	159
$C17-H17\cdots O3'$	0.93	2.48	3.138 (4)	128
O18-H18···O3′	0.82	1.79	2.605 (3)	169
$N11-H11\cdots O4'^{ii}$	0.86	1.87	2.681 (4)	157

Symmetry codes: (i) 1 - x, 2 - y, -z; (ii) $-x, y - \frac{1}{2}, \frac{1}{2} - z$.

H atoms were included as riding on their parent atoms, with C– H = 0.93 Å, N–H = 0.86 Å and O–H = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Data collection: *Siemens R3m/V User's Guide* (Siemens, 1989); cell refinement: *Siemens R3m/V User's Guide*; data reduction: *XDISK* (Siemens, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1995); software used to prepare material for publication: *SHELXL97*.

TK, SS and MS thank the DAAD and the Alexander von Humboldt Foundation for a grant within the priority

programme 'Stability Pact South-Eastern Europe', and the Bulgarian National Fund for Research for grant X-1213.

References

- Angelova, O., Petrova, R., Radomirska, V. & Kolev, Ts. (1996). Acta Cryst. C52, 2218–2220.
- Angelova, O., Velikova, V., Radomirska, V. & Kolev, Ts. (1996). Acta Cryst. C52, 3252–3256.
- Bosshard, C., Sutter, K., Prêtre, P., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). *Organic Nonlinear Optical Materials*. Amsterdam: Gordon and Breach.
- Chemla, D. S. & Zyss, J. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1, edited by D. Chemla and J. Zyss, pp. 23–187. New York: Academic Press.
- Hughes, D. L. & Truter, M. R. (1979). J. Chem. Soc. Dalton Trans. pp. 520-527.
- Lee, C., Wang, C.& Wang Y. (1996). Acta Cryst. B52, 966–975.
- Kolev, T. M., Wortmann, R., Spiteller, M., Sheldrick, W. S. & Heller, M. (2004). Acta Cryst. E60, 0956–0957.
- Nalwa, H. S., Watanabe, T. & Miyata, S. (1997). Nonlinear Optics of Organic Molecules and Polymers, edited by H. S. Nalwa and S. Miyata, pp 89–329. Boca Raton: CRC Press Inc.
- Prout, C. K. & Wheeler, A. G. (1966). J. Chem. Soc. A, pp. 1286-1290.
- Sheldrick, G. M. (1995). *SHELXTL*. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1989). R3m/V User's Guide. Version 3.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Singh, N. B., Singh, R. & Singh, K. (2000). Z. Phys. Chem. 214, 179-186.
- Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, 0687– 0689.
- Smith, G., Wermuth, U. D. & White, J. M. (2000). Chem. Commun. pp. 2349– 2350.
- Smith, G., Wermuth, U. D. & White, J. M. (2001). Aust. J. Chem. 54, 171-175.
- Smith, G., Wermuth, U. D. & White, J. M. (2003). CrystEngComm, 5, 58-61.
- Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, 0575–0581.
- Wolff, J. & Wortmann, R. (1999). Adv. Phys. Org. Chem. 32, 121-217.